OPERATIONAL DESCRIPTION OF Electric cargo handling equipment

G KALMAR

BIGGEST CONCERNS

regarding zero emission equipment

How much will battery powered equipment impact my operations if I need to charge several times per day?

How will I know which battery and infrastructure to choose for my operations? How will batteries perform during cold winter or hot summer time?

What will battery cost and residual value be? And with that - how can I ensure a good total cost of ownership? How should the power supply be designed

The Electric Reachstacker

Annual CO₂ reductions vs diesel Reachstackers 100 tons CO₂ = 44

 CO_2

Capacities and performances like a diesel Reachstacker
 Energy-efficient design
 Operational in all climates
 Modular battery solution
 Low operational noise

Energy-efficiency optimizes productivity

- Minimized energy losses and optimized energy accumulation
- Ensures longer charger intervals
- Improves battery lifetime and performance
- ✓ Saves on battery size and cost
- Optimizes total cost of ownership

Productive in extreme weather conditions


External temperature

-30°C

Battery core temperature

12

40°C

GURIA

NEW ERA

NEW ERA

One size does not fit all

- ✓ 4 different Li-Ion battery sizes
- Long battery lifetime and performance
- Opportunity charging is key
- 10-12 year first life (until 80% of initial capacity)
 at 2500 running hours/year
 - Optimizes return on investment
- Proven Technology

Low operational noise

Better working environment

- > Lower stress
- > Better concentration
- > Higher productivity
- > Easier to hear warnings
- Lower risk of accidents

Extended operational hours

 Noise restrictions close to residential areas

Operating hours

Constanting of the second

CA KUTN

Simme

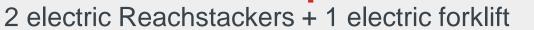
Operational data is essential to identifying right battery size

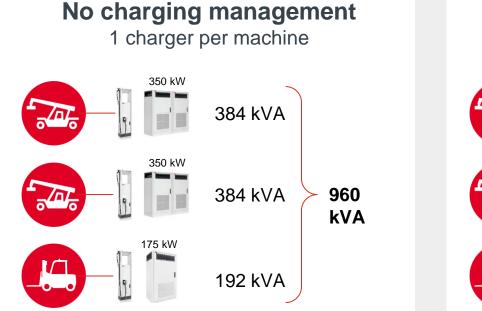
 Battery size

 245 kWh
 326 kWh
 407 kWh
 587 kWh

 Operating hours
 3 - 4
 4 - 5
 5 - 6.5
 8 - 10

Charging time from maximum discharge level

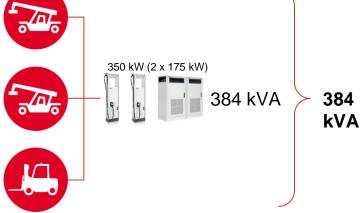

CA KALMAR


an Color	BATTERY SIZE			
CHARGER SIZE	245 kWh	326 kWh	407 kWh	587 kWh
175 kW	75 min	100 min	120 min	175 min
350 kW	35 min	50 m in	60 min	90 min
S KALMAR		SPL		

EC@ efficient

NEW ERA

Infrastructure requirements: 2 scenarios



NEW ERA

CHARGING MANAGEMENT

- 1. Manual = Separating breaks for the operators
- System controlled = Based on battery state of charge, operational status, electricity price, grid capacity/availability (solution to be developed)

So how will electric cargo handling equipment impact operations?

IMPROVEMENT

- Lower emissions
- > Lower noise
- Possibility to extend working hours close to residential areas
- > Better working environment
- > Lower service cost

NO CHANGE

- Same applications as diesel equipment
- Same capacities as diesel equipment
- Same operational productivity as diesel equipment
 - Same equipment lifetime

CHANGE

Infrastructure adaptation

New charging habits Training drivers in ecoefficient driving

TOGETHER

we can put eco-efficiency into action, step by step

EFFICIENCY IN ACTION